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Abstract

We have a data on petrol consumption,with several relevant explanatory variables.Our goal is to develop a model to
predict the response variable with the help of the explanatory variables.The model will contain unknown parameters
which we will estimate with the data at hand and then try to assess how well our model performs,if any problems arise,
we try to overcome that and modify our model accordingly.We mainly try to implement our knowledge gained from
the Regression Techniques course to this real life data.

Data Description:

For one year, the consumption of petrol(in millions of gallons) was measured in 48 states.
The relevant variables are:
x1:the petrol tax(in cents per gallon)
x2:the average income per capita(in dollars)
x3:the number of miles of paved highway(in miles)
x4:the proportion of the population with driver’s licenses
So,here y (consumption of petrol) is our response/dependent variable and x1,x2,x3,x4 which are defined above are
our explanatory variables.
For our convenience,we will use x1., ,x4,y instead of the whole names of the variables in most of the cases
throughout the project.
So,after loading the dataset and storing as a dataframe, our data looks like as follows:

x1 x2 x3 x4 y

1 9.0 3571 1976 0.525 541

2 9.0 4092 1250 0.572 524

3 9.0 3865 1586 0.580 561

4 7.5 4870 2351 0.529 414

5 8.0 4399 431 0.544 410

6 10.0 5342 1333 0.571 457

We have 48 observations and no null values,thus we directly start our work.
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At first, we start with the most basic and try to fit a multiple linear regression model with all the available covariates,
with an intercept term i.e. our initial model is:

E(y) = β0 +β1x1 +β2x2 +β3x3 +β4x4

Call:

lm(formula = y ~ x1 + x2 + x3 + x4, data = df)

Residuals:

Min 1Q Median 3Q Max

-122.03 -45.57 -10.66 31.53 234.95

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.773e+02 1.855e+02 2.033 0.048207 *

x1 -3.479e+01 1.297e+01 -2.682 0.010332 *

x2 -6.659e-02 1.722e-02 -3.867 0.000368 ***

x3 -2.426e-03 3.389e-03 -0.716 0.477999

x4 1.336e+03 1.923e+02 6.950 1.52e-08 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 66.31 on 43 degrees of freedom

Multiple R-squared: 0.6787,Adjusted R-squared: 0.6488

F-statistic: 22.71 on 4 and 43 DF, p-value: 3.907e-10

Now we will compare between the actual values and the fitted values.
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Now,we take a look at the residual plot.
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Apparently,it seems that the residuals do not exhibit any particular pattern.Also,we perform a nonparametric test-
one sample Run’s Test to check whether our visual inspection is justified or not.

Runs Test

data: model$residuals

statistic = -0.2918, runs = 24, n1 = 24, n2 = 24, n = 48, p-value =

0.7704

alternative hypothesis: nonrandomness
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Interpretation:

Although,the residuals can be seen to be randomly scattered since the p-value of Run’s test is >0.05,still we are
not sure whether our sample size is large enough or not to conclude anything. Moreover,looking at the
multiple R2 = 0.6787,we conclude that 67.87% of the total variability is explained by our model and from
the plot of fitted values vs actual values, it is evident that our model don’t agree "VERY WELL" to the
actual data and hopefully we can improve.Also,we need to check whether the assumptions of simple linear
regression are satisfied or not.
At first,we test whether the assumption of Homoscedasticity is satisfied or not.We will use the Breusch Pagan
test for this.

p-value 0.006901944

Since,p-value for the Breusch Pagan test come out to be less than the desired level of significance α = 0.05,
hence we do not have enough evidence to conclude that the assumption of homoscedasticity holds in our model. But ,
the Bresuch Pagan Test is very sensitive to any violation of normality assumption, so we cannot directly conclude
anything from here unless the assumption of normality holds.Thus, we proceed to check that assumption.

We will try to do some visual inspection at first,using the Quantile-Quantile Plot.

Loading required package: ggplot2

Attaching package: 'qqplotr'

The following objects are masked from 'package:ggplot2':

stat_qq_line, StatQqLine
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From the diagram,we don’t get a very good idea whether the quantiles of the errors obtain from our data actually
match we the theoritical quantiles of the normal distribution.So,we perform the Shapiro-Wilks Test for normality
to verify the assumption.The p-value of Shapiro-Wilks test come out to be 0.0151 < 0.05 = α ,which is our
desired level of significance,Hence,we have enough evidence to conclude that the assumption of normality does not
hold.Hence,we need a remedy for this.
As a remedial measure,we want to do the famous Box-Cox Transformation.But,this transformation may not work well
if outliers are present.Thus,we proceed to the diagnosis of outliers,high leverage points,influential points,etc.
We are now going to encounter the following notations,terminologies and measures very often for a while:-

Let yi be the actual value of the response in the ith observation and ŷi denote the fitted value for the same.
Let, H denote the hat matrix and hi denote the ith diagonal element of the hat matrix.Let β̂ be the usual LSE and

S2 = ∑
n
i=1

e2
i

n−p be the usual unbiased estimate of the error variance σ2. ˆβ (i) and S(i)2 denote the same estimates
computed by omitting the ith observation. Then,
Residual: ei = yi − ŷi
Internally studentized residual: ri =

ei

S(1−hi)
1
2

and Externally studentized residual: ti =
ei

S(i)(1−hi)
1
2

We will be using some more measures like DFFITS,Cook’s D,etc.We will do the leave one out diagnostics only.
At first we start by plotting the raw residuals.

Attaching package: 'olsrr'

The following object is masked from 'package:datasets':

rivers
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Residual Box Plot

From the Boxplot above,it seems that one point is having extremely large residual,so it may be a
potential outlier.Let us plot the internally and externally studentized residuals too.
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Threshold: abs(3)
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Since we know that in absence of outliers the ti ∼ tn−p−1 , a reasonable definition of "large" is a point
for which |ti|> 2.Although the plot of internally studentized residuals indicate one point as potential outlier,
the plot of externally studentized residuals does not reveal anything.But,looking at these plots is not enough to
conclude surely about outliers as this diagnostic approach fails if the point we are checking for has high leverage.

Hence, we plot the studentized residuals and hat matrix diagonals on two axes of the same plot.A reasonable definition
for high leverage point is one satisfying hi >

2p
n .
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Now the above diagram gives us more clarity , we can safely conclude that the 40th observation is an outlier.But,these
basic visualizations are always not enough to get hold of influential points since unfortunately,the hat matrix diagonals
are themselves subject to the effect of high leverage points and do not always give a reliable indication of leverage.

Hence, we use an improved measurement like Cook’s D which for the ith observation is defined as Di =
r2
i hi

p(1−hi)
.

This measure takes into account both the cases of high residuals and high leverages and thus provides some means to
identify influential points.
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Here we observe 3 points to be outliers.But we still check with another measure DFFITS which may capture
those points which Cook’s D might have missed out.It is defined for the ith observation as DFFIT Si = ti(

hi
1−hi

)
1
2

The cutoff point is taken as 2
√

p/n here.
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DFFITS identify the same points as outlier as the Cook’s D had indicated.This is not surprising since the
expressions of both the measures are quite similar upto a certain extent.

Conclusion:

We will drop the 19th,40th and 45th observations as they are identified to be influential by both
Cook’s D and DFFITS.
Now , as we have eleminated outliers from our data , so we are ready to do the Box Cox transformation.
Let Y (λ )

i be the transformed response.This method assumes that there is a parameter λ such that

Y (λ )
i = g(Yi,λ ) = xT

i β + εi

where
g(Y,λ ) = Y λ−1

λ
,λ ̸= 0

g(Y,λ ) = log(Y ),λ = 0
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First we plot the log likelihood for a series of values of the tuning parameter λ and take that value for which
the log likelihood is maximised.Then with that value of λ we transform the response.

Attaching package: 'MASS'

The following object is masked from 'package:olsrr':

cement
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[1] 0.6666667

Now we fit the same simple linear regression model with all the 4 co variates with the transformed response y(λ ).

Call:

lm(formula = y ~ x1 + x2 + x3 + x4, data = df1)

Residuals:

Min 1Q Median 3Q Max

-13.248 -4.080 -0.295 2.640 14.454

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.702e+01 1.666e+01 5.824 8.36e-07 ***

x1 -2.463e+00 1.203e+00 -2.048 0.0472 *

x2 -9.969e-03 1.548e-03 -6.440 1.14e-07 ***

x3 1.253e-04 3.103e-04 0.404 0.6884

x4 1.122e+02 1.879e+01 5.970 5.20e-07 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Residual standard error: 5.679 on 40 degrees of freedom

Multiple R-squared: 0.7087,Adjusted R-squared: 0.6795

F-statistic: 24.33 on 4 and 40 DF, p-value: 2.941e-10

We observe that our co-efficient of determination has increased (R2 = 0.7087) which is an indicator that we were
successful in discarding influential points. Now,let us check again whether the assumptions of linear regression are
satisfied or not.Since, we did the Box Cox Transformation to get close to Normality assumption,let us check that first.
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From the Normal QQ Plot , now it seems that the distribution of the sample being tested is close to normal.
Let us perform the Shapiro Wilks Test to confirm that. The p-value comes out to be 0.8021 > 0.05 = α which
is our desired level of significance.Thus,we conclude that now the assumption of normality holds.
Now,we are in a position to perform the Breusch Pagan test , the p-value comes out to be 0.86>0.05, i.e.
we have no evidence to suspect heteroscedasticity.

Another important assumption of the classical linear regression model is that autocorrelation is not present in
the model i.e. the error term related to any observation is not influenced by the error term related to any other
observation. If present, there may be different problems in our ideal setup. So, we want to detect if autocorrelation
is present in our model or not. We first plot the autocorrelogram.
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Loading required package: carData
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From a visual inspection it seems that there is no evidence of autocorrelation to be present.But, we will use
the Durbin Watson test to confirm our findings. The p-value for the Durbin Watson test(testing against the alternative
H1 : ρ ̸= 0 comes out to be 0.318 > 0.05 = α which is our desired level of significance. Thus,we
conclude that autocorrelation is not present in our model.
Now, we check whether collinearity is present in our model or not, since it may lead to serious issues in the variance
of estimates. There are several ways to detect multicollinearity.At first we take a look at the pairwise correlations.
If any of the pairwise correlations are large , say >0.8 , we suspect collinearity to be present.

x1 x2 x3 x4

x1 1.0000000 0.10399921 -0.59963864 -0.18032905

x2 0.1039992 1.00000000 0.09038648 0.03422025

x3 -0.5996386 0.09038648 1.00000000 -0.01362626

x4 -0.1803291 0.03422025 -0.01362626 1.00000000

No pair of explanatory variables have enough high correlation among them to suspect collinearity. But, we proceed to
check with a more popular measure called Variance Inflation Factor or we may use Tolerance alternatively.
High VIF and low Tolerance indicate the presence of collinearity.

$vif_t

Variables Tolerance VIF

1 x1 0.5774498 1.731752

2 x2 0.9456295 1.057497

3 x3 0.5993434 1.668493

4 x4 0.9372729 1.066925
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We note that , the values of VIF are not at all large (not even >2.5) , equivalently the values of Tolerance are not low
enough to suspect collinearity. Thus we conclude that there is no evidence of collinearity to be present in our model.

So,this model seems to be fine as all the standard assumptions hold and R2 is also moderately good. But,let us take
a close look once more at our fitted model.

Call:

lm(formula = y ~ x1 + x2 + x3 + x4, data = df1)

Residuals:

Min 1Q Median 3Q Max

-13.248 -4.080 -0.295 2.640 14.454

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.702e+01 1.666e+01 5.824 8.36e-07 ***

x1 -2.463e+00 1.203e+00 -2.048 0.0472 *

x2 -9.969e-03 1.548e-03 -6.440 1.14e-07 ***

x3 1.253e-04 3.103e-04 0.404 0.6884

x4 1.122e+02 1.879e+01 5.970 5.20e-07 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.679 on 40 degrees of freedom

Multiple R-squared: 0.7087,Adjusted R-squared: 0.6795

F-statistic: 24.33 on 4 and 40 DF, p-value: 2.941e-10

We can see that the p-value of the t-test for testing the significance of the explanatory variable x3 i.e. H0 : β3 = 0 is
0.688 > 0.05 = α , which implies that β3 is not significant i.e. the variable x3 is having no significant contribution
to explain the total variability.So,this phenomenon forces us to think about choosing the best subset of predictors.
Now , how do we select the model? There are different procedures.We are going to use a stepwise method
known as "Forward Selection" . We will get several models and choose the "Best" one according to some criterias,
measures which can assess how good a model performs.So,we proceed to do that.

The result of the forward selection method is as follows:

Model R2 Adjusted R2 Mallow’s Cp AIC
y = β0 +β2x2 + ε 0.3215 0.3058 52.175 322.7524

y = β0 +β2x2 +β4x4 + ε 0.6437 0.6267 9.928 295.7752
y = β0 +β1x1 +β2x2 +β4x4 + ε 0.7075 0.6861 3.1632 288.8922

y = β0 +β1x1 +β2x2 +β3x3 +β4x4 + ε 0.7087 0.6795 5 290.7090
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Observing the values of R2,adjusted R2, Mallow’s Cp and AIC(Akaike Information Criterion) we choose the best subset
of explanatory as x1,x2,x4 and fit our final model based only on these 3 variables i.e.
E(y(λ )) = β0 +β1x1 +β2x2 +β4x4

Call:

lm(formula = y ~ x1 + x2 + x4, data = df1)

Residuals:

Min 1Q Median 3Q Max

-13.8708 -3.6606 -0.3381 2.7630 14.1451

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 100.280234 14.427378 6.951 1.93e-08 ***

x1 -2.768207 0.925443 -2.991 0.00469 **

x2 -0.009843 0.001500 -6.560 6.91e-08 ***

x4 110.878269 18.326806 6.050 3.67e-07 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.62 on 41 degrees of freedom

Multiple R-squared: 0.7075,Adjusted R-squared: 0.6861

F-statistic: 33.06 on 3 and 41 DF, p-value: 5.023e-11

Now,since we have fitted a new model,we will again do the same diagnostics done earlier and check
whether the standard assumptions hold.

At first, we do the outlier,leverage diagnostics again.We will use the same plots and measures as earlier. Let us start
with the raw residual plot.
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Residual Box Plot

Clearly we can see that there are two potential outliers,but again we will see some more plots befor concluding.
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Threshold: abs(3)
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Both Cook’s D and DFFITS identify the 18th and 32nd observations to be outliers.Thus,we drop them and fit our
model.

Call:

lm(formula = y ~ x1 + x2 + x4, data = df2)

Residuals:

Min 1Q Median 3Q Max

-13.6874 -3.5633 -0.2955 2.8905 9.8120

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 94.819005 13.191670 7.188 1.19e-08 ***

x1 -2.335081 0.839784 -2.781 0.00831 **

x2 -0.010258 0.001431 -7.168 1.26e-08 ***

x4 117.570783 16.559112 7.100 1.56e-08 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.043 on 39 degrees of freedom

Multiple R-squared: 0.7562,Adjusted R-squared: 0.7374

F-statistic: 40.31 on 3 and 39 DF, p-value: 4.974e-12

Finally,we will check whether the standard assumptions of classical linear regression model hold or not.

Test p-value
Breusch Pagan Test (for heteroscedasticity) 0.726668

Shapiro Wilks Test (for Normality) 0.4685
Durbin Watson Test (for Autocorrelation against H1 : ρ ̸= 0) 0.386
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Next we do the collinearity diagnostics.

$vif_t

Variables Tolerance VIF

1 x1 0.9491353 1.053591

2 x2 0.9841836 1.016071

3 x4 0.9585887 1.043200

The values of the VIF’s are not at all large and the tolerances are quite large,which gives no evidence
to suspect collinearity to be present in our model. hence, all the conditions needed are satisfied.

We finally see the plot of predicted values and observed values.
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Comment:

Thus,we see that there is a nice agreement between the observed and the predicted values and the
coefficient of edetermination R2 is also moderately high, so we can say that this is a good fit.

Conclusion:

We started with the very basic classical linear regression model and took the necessary steps to make our model
better and ensured all the standard assumptions namely homoscedasticity,normality,no presence of autocorrelation
and multicollinearity to be satisfied and came up with this final model, eventually in due course we also got rid of
influential points and one insignificant explanatory variable namely x3:the number of miles of paved highway(in miles).
Hence,we conclude the optiomal model to be:

E(y(λ )) = β0 +β1x1 +β2x2 +β4x4

where
y : consumption of petrol (in gallons)
y(λ ):Transformed y after Box Cox transformation
x1:the petrol tax(in cents per gallon)
x2:the average income per capita(in dollars)
x4:the proportion of the population with driver’s licenses
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