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What is Density Estimation?

▸ One of the most fundamental and important concept in statistics
is the probability density function of a random variable X.

▸ In practice,when we deal with data in real life, it is too much
unrealistic to think that the density f will be known.

▸ Then a natural question arises that in this kind of scenario , what
to do?

▸ The main motive of this presentation is an attempt to answer
this question.

▸ Let's see ,.



What is Density Estimation?

▸ Suppose,we have a set of observed data points assumed to be a
sample from a distribution with unknown pdf f .

▸ Density Estimation is a method to construct an estimate of this
unknown density f .

▸ One approach can be parametric density estimation i.e. we
assume that the distribution from where the data is drawn,is a
known parametric family and we just have to �nd the estimates
of the parameters which characterize the distribution.

▸ But, the form of the density is also seldom known to us.

▸ Hence,we make our assumptions less rigid about the distribution
of the observed data.

▸ This approach is nonparametric density estimation.

▸ The focus of discussion will be on this nonparametric approach.



An Approach to Visualize - Histograms

▸ To get an idea about any kind of data,it is very helpful if we can
visualize it properly.

▸ In our problem,we can serve that purpose with Histograms.

▸ Infact,histogram is the oldest and most widely used density
estimator.

▸ Let , our origin = x0 and bin width = h,de�ne the bins of our
histogram to be the intervals [x0 +mh,x0 + (m + 1)h),for +ve
and -ve integers m.

▸ The histogram is hence de�ned as :

f̂(x) =
1

nh
(no of Xi in the same bin as x)

▸ To construct the histogram,we have to choose both origin x0 and
binwidth h , but it is the binwidth h that plays the key role in
the amount of smoothing.

▸ We will see this fact veri�ed shortly through our simulation.



Histograms by varying number of bins

▸ A sample X1,X2,...,Xn of size n = 200 from the density

f (x) = ϕ (2 (x − 1)) +
1

2
ϕ (x − 5)

where ϕ (x) = 1√
2π

e−
x2

2 is drawn.

▸ Then we plot the histograms of this sampled data for di�erent
number of bins.

▸ See all the plots for varying number of bins or equivalently
varying binwidth on the same panel to catch the di�erence:-



Histograms for varying number of bins
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Observations

▸ If number of bins is too small (equivalently binwidth is large),the
histogram is not able to estimate or mimic the true distribution
very well , in our case , it underestimates the values of the true
density at some points.

▸ Similarly, if we take the number of bins to be too large , then also
the histogram does not perform good enough.In contrary to the
previous situation,it overestimates the values of the true density
at some points.

▸ If we take a look at the plots in the middle,they give the best
estimate among all the plots available.

▸ Hence,our takeaway from this visualization is that neither we
should decrease the binwidth arbitrarily nor should we make the
bins too thick.

▸ Thus,one of our main challenges is to �nd the best choice of h
or optimum binwidth hopt for our estimator.

▸ We will somehow try to achieve this goal through di�erent
approaches.



Drawbacks of Histogram

▸ Subjective choice of origin.

▸ Bin width can be subjective.

▸ Discontinuity.

▸ Derivatives of density function cannot be estimated.

▸ Di�cult to extend this idea to high dimensions.



The Naive Estimator
▸ By de�nition,

f(x) = lim
h→0

1

2h
P (x − h <X < x + h)

▸ For any given h,it is quite intuitive to estimate
P (x − h <X < x + h) by the proportion of sample points falling in
the interval (x − h,x + h).

▸ Hence, a natural estimator is

f̂(x) =
1

2hn
[no. of Xi falling in (x − h,x + h)]

▸ We shall call this estimator the Naive Estimator.
▸ x − h <Xi < x + h => −1 <

x−Xi

h
< 1

▸ So,to de�ne our naive estimator more mathematically,de�ne

w(x) =
1

2
I{∣x∣<1}

▸ Then,the naive estimator is de�ned as:-

f̂(x) =
1

n

n

∑
i=1

1

h
w (

x −Xi

h
)

▸ Due to some drawbacks hence we try to generalize this concept.



Any Improvement??

▸ Takes care of the origin issue.

▸ All other drawbacks remain as they are.



Kernel Density Estimator

▸ We just replace the function w by a kernel function K

satisfying
∞
∫
−∞

K(x)dx = 1.

▸ Usually (not always) , K will be a symmetric pdf.

▸ Assume supxK(x) ≤M, ∣x∣K(x)→ 0 as ∣x∣→∞

▸ Assume K(x) =K(−x);x ∈R,
∞
∫
−∞

x2K(x)dx <∞

▸ The Kernel Type Estimator is thus given by :

fn(x) =
1

nhn

n

∑
i=1

K(
x −Xi

hn
)

hn → 0 as n→∞



Demonstrating how KDE Works
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Some examples of Kernel Functions

Kernel Names Functional Form
(K (x))

E�ciency relative
to Epanechnikov

Kernel

Uniform 1
2
I ∣x∣≤1 92.9%

Triangular (1 − ∣x∣)I ∣x∣≤1 98.5%

Epanechnikov 3

4
√
5
(1 − t2

5
)I ∣x∣≤

√
5 1

Gaussian 1√
2π

e−
t2

2 Ix∈R 95.1%

Cosine π
4
cos (π

2
x)I ∣x∣≤1 99.9%

Here,we have done a comparative study between these kernels to show
our results.To compare how di�erent choices of kernels in�uence the
estimated density, we make the KDE plots for the same observed data
and di�erent kernels.



Comparison between di�erent kernels
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Comparison between di�erent kernels
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Asymmetric kernels-how they behave?

▸ Though it's usually assumed in KDE literature that the kernel
function K (x) is symmetric, it's of no harm to observe what
happens if we take K (x) to be asymmetric also.

▸ For e.g we can choose our kernel as K (x) = e−xIx≥0

▸ Let's take a look at the plot of the estimated density.



Asymmetric kernels-how they behave?
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Observation

▸ In the previous diagram,we have compared our estimated density
to the true density.

▸ We have a very very interesting observation to make here.

▸ The estimated kernel underestimates the true density for smaller
values of x and for larger values of x, it overestimates the density.

▸ Why does this happen?



Observation

▸ The reason behind this is the form of the kernel density estimate
at any point x is de�ned as

f̂n (x)=
1

nh

n

∑
i=1

K (
x −Xi

h
)

=
1

nh

n

∑
i=1

e−
x−Xi

h I{ x−Xi
h ≥0}

=
1

nh

n

∑
i=1

e−
x−Xi

h I{x≥Xi}

▸ Note that, the estimated value at x depends on only the
observations that lie on the left of x.

▸ If we move from left to right in the plot, number of X ′is increase.

▸ As a consequence they contribute more and more to the
estimated value.

▸ On the left portion, lesser number of points contribute which
results in such a type of estimated density.



Kernel-Smoothed Cumulative Distribution

Function
Since, we de�ne the kernel density estimator as :-

f̂n (x) =
1

nh

n

∑
i=1

K (
x −Xi

h
)

where K (.) is the kernel function, an obvious extension of this idea is
to make smoothed estimators of CDF as :-

F̂n (x) =

x

∫
−∞

f̂n (t)dt

=

x

∫
−∞

1

nh

n

∑
i=1

K (
t −Xi

h
)dt

=
1

n

n

∑
i=1

x

∫
−∞

1

h
K (

t −Xi

h
)dt

=
1

n

n

∑
i=1

K̃ (
x −Xi

h
)dt



Kernel Smoothed CDF Estimators

▸ where K̃ (x) =
x

∫
−∞

K (t)dt is the cumulative function formed using

the kernel function.

▸ We plot the kernel smoothed estimate CDF for a sample from
standard normal distribution for di�erent choices of smoothing
parameter h.

▸ We also plot the population CDF for standard normal
distribution with this.

▸ Let's take a look at the plot for di�erent choices of bandwidths.



Kernel Smoothed CDF Estimators
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Subjective Choice

▸ A natural method for choosing the smoothing parameter is to
plot out several curves and choose the estimate that is most in
accordance with one's prior ideas about the density.

▸ For many applications this approach will be perfectly
satisfactory. Indeed, the process of examining several plots of the
data, all smoothed by di�erent amounts, may well give more
insight into the data than merely considering a single
automatically produced curve.

▸ Consider, as an example, the estimate given in following plot, the
data underlying these estimates are the amounts of winter
snowfall (in inches) at Bu�alo, New York, for each of the 63
winters from 1910/11 to 1972/73.



Kernel estimates for annual snowfall data

0 50 100 150

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Estimated Density plots for Buffalo Snowfall data

sq

E
st

im
at

ed
 D

en
si

ty

h = 6

h = 12



Observation

▸ It can be seen from the plot that varying the smoothing
parameter yields essentially two possible explanations of the
data, either a roughly normal distribution or a trimodal curve
suggesting a mixture of three populations approximately in the
ratio 1:3:1.

▸ For many purposes, particularly for model and hypothesis
generation, it is by no means unhelpful for the statistician to
supply the scientist with a range of possible presentations of the
data. A choice between the two alternative models suggested by
our �gures is a very useful step forward from the enormous
number of possible explanations that could conceivably be
considered.



Reference to a standard distribution

If we assume a standard family of distributions while estimating the
density, then we can obtain an exact expression of the optimal bin
width hopt. For example if we assume the density to be normally
distributed with variance σ2, and if we use gaussian kernel for
estimation (i.e. K (x) = ϕ (x)), then we get :-

hopt = (4π)
−1/10
(
3

8
π−

1/2
)

−1/5
σn−

1/5

= (
4

3
)

1/5
σn−

1/5
= 1.06σn−

1/5

We draw a sample of size n = 500 from a N (0, σ2 = 4.41) distribution
which gives hopt ≈ 0.628.



E�ect of Undersmoothing
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E�ect of Oversmoothing

−4 −2 0 2 4 6 8

0.
00

0.
05

0.
10

0.
15

0.
20

Estimated Normal Density using h = 1

sq

D
en

si
ty



Using optimal bandwidth
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Least Squares cross validation

▸ Assume X1,X2, ...,Xn are iid random variable having unknown
density f .

▸ Let f̂(x) is any estimator of the density f(x).

▸ The integrated squared error of f̂(x) is

∫ (f̂(x)−f(x))
2dx = ∫

ˆ(f(x))2dx−2∫ f̂(x)f(x)dx+∫ (f(x))
2dx

▸ The last term doesn't depend on f̂(x) so we want to minimize,

R(f̂) = ∫
ˆ(f(x))2dx − 2∫ f̂(x)f(x)dx

▸ The basic principle of least square cross validation is to construct
a estimator of R(f̂) and minimise the estimator with respect to h.



Least Squares cross validation

▸ M0(h) is an estimator of R(f̂), Which is de�ned as

Mo(h) = ∫
ˆf(x)

2
dx −

2

n
Σf̂−i(Xi)

▸ Since we can think of the histogram as an estimator of the
density function as :-

f̂n (x) =
1

nh
(no of Xi in the same bin as x)

▸ we can also �nd an approximate value of the optimal binwidth
for histogram using cross validation method.

▸ Since, the cross-validation estimator of risk is :-

M0 (h) = ∫ f̂2
n (x)dx −

2

n

n

∑
i=1

f̂−i (Xi)

▸ We will �nd our optimum value of h by minimising this quantity.



Least Squares cross validation

▸ We demonstrate the fact using a simulation study where we use
our old sample of size 200 from the density

f (x) = ϕ (2 (x − 1)) +
1

2
ϕ (x − 5)

▸ where ϕ (x) = 1√
2π

e−
x2

2 is the standard normal density.

▸ Without loss of generality, we transform this observations linearly
so that they lie in the range [0,1] by doing the transformation

yi =
xi− min

1≤j≤n
(xj)

max
1≤j≤n

(xj)− min
1≤j≤n

(xj) .

▸ We take a range of values of nbins as {1, . . . ,40} and then, for
each of the choices we calculate M0 (h) where h = 1

nbins
is the

binwidth since we have normalized the range to [0,1]. (Hence,
nbinsh = 1.)



Least Squares cross validation

▸ After calculating the risk estimates, we plot them and the plot
looks like this :-
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Least Squares cross validation

▸ So from the plot we can see that the estimated risk is minimum
when nbins = 19 Ô⇒ h ≈ 0.0526 and indeed it is quite similar to
the heuristic observations, we made earlier.



Likelihood Cross-validation

▸ X1,X2, ..,Xnare iid observations with density f .f̂n is a kernel
density estimator of f with using kernel K.

▸ Suppose we have an observation Y from density f .Then the log
likelihood of f is logf(Y ).

▸ f̂n is a parametric family of densities depending on h.

▸ The log likelihood of h is logf̂n(Y ).

▸ Since Y is not available, we can omit ith of the observation (Xi)

from the sample and reconstruct the density estimate f̂−i and the
use Xi as Y. This would give the log likelihood as logf̂−i(Xi). We

can evaluate logf̂−i(Xi) by omitting X1,X2, ...,Xn and average
out.

▸ The score function is

CV (h) = n−1∑
i

logf̂−i(Xi)

▸ We can �nd the optimal value of h by maximising CV (h).



Likelihood Cross-validation
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Optimal Bandwidth in case of an exponential

data

▸ In this simulation study, we �rst draw a random sample of size
100 from a exponential population with mean 1.

▸ Then we use the likelihood cross validation technique to �nd out
the optimal value of h.

▸ We obtain hopt ≈ 0.06 and then using this optimal bandwidth we
plot the estimated kernel density.

▸ In order to understand the importance of choosing optimal
bandwidth, we make the plots for some other choice of h like
h = 1.

▸ Let us have a look at them.



Optimal Bandwidth in case of an exponential

data
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Observation

▸ We can clearly see how drastically the estimated density changes
if we take choices of h other than the optimal one as it fails to
capture the asymptotic nature of the density near 0.

▸ Another important drawback to mention here is that the
estimated density is non-zero for negative values of x as well
which is occuring due to positive weight that is being assigned
due to observations whose values are near zero.



Demonstrating importance of choosing h
optimally

Suppose we generate a random sample of size 1000 from a density
f (x) of the form :-

f (x) =
1

2
ϕ (x; 0,1) +

4

∑
i=1

ϕ(x;(
i

2
− 1) ,

1

10
)

We have estimated this �claw shaped� density known as �Bart
Simpson� density using epanechnikov kernel based on the sample
observations.



Demonstrating importance of choosing h
optimally
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Demonstrating importance of choosing h
optimally
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Demonstrating importance of choosing h
optimally
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Observation

▸ For large bin width the kernel density is undersmoothed. The
estimated density doesn't resemble the true density.

▸ For a particular value of bin width the kernel density estimates
the true density precisely.

▸ For small bin width, the estimated kernel density is over
smoothed and it doesn't capture the true nature of the density.

▸ So, it is very crucial to �nd the optimal bin width for estimating
the density using kernel estimation.



Limiting Distribution of Vn

▸ If K (.) is a kernel function of bounded variation and the series
∞
∑
n=1

e−γnh
2
n converges ∀ γ > 0 where hn denotes the bandwidth.

Then
Vn = sup

x
∣f̂n (x) − f (x)∣→ 0 w.p. 1

▸ Assumption 1 For hn > 0 and hn → 0 as n→∞.

▸ Assumption 2 K (.) is a probability probability density on R
such that K (.) is right continuous, of bounded variation on R,

▸ and
∞

∫
−∞

∣u∣K (u)du <∞

▸ Assumption 3 K (.) satis�es the following two conditions

∞

∫
−∞

uK (u)du = 0,

∞

∫
−∞

u2K (u)du <∞



Convergence Rate of Vn

▸ Under these conditions it can be shown that58:-

▸

sup
x
∣f̂n (x) − f (x)∣ = O [n

−1/2h−1n (log logn)
1/2
]

▸ and if we choose hn = n
−1/4then we have :-

sup
x
∣f̂n (x) − f (x)∣ = O [n

−1/4
(log logn)

1/2
]

▸ which indicates that the rate at which supx ∣f̂n (x) − f (x)∣ goes
to 0 is very slow which can also be veri�ed from the plots we
made using simulation



Asymptotic distribution of Vn
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Asymptotic normality of kernel density estimator

▸ We assume that f is continuous at x.

▸ f̂n(x) is the estimated density of f.

f̂n(x) = n
−1

n

∑
k=1

Znk

▸ Where,
Znk = h

−1
n K[(x −Xk)/hn]

▸ are i.i.d random variables. A necessary and su�cient condition
for

{f̂n(x) −E(f̂n(x))}{var(f̂n(x)}
− 1

2
L
Ð→ N(0,1)

▸ is that, for every ε > 0.

nP [∣Zn1 −E(Zn1)∣{var(Zn1)}
− 1

2 ≥ εn1/2
]Ð→ 0 as n Ð→∞



Asymptotic normality of kernel density estimator

▸ A su�cient condition for

f̂n(x) −E(f̂n(x))
√

var(f̂n(x))

L
Ð→ N(0,1)

is that, for some δ > 0

E∣Zn1 −E(Zn1)∣
2+δ

nδ/2[var(Zn1)]
1+δ/2 Ð→ 0 as n →∞

which is satis�ed by the Epanechnikov kernel.

▸ Now, we use simulation to verify the result stated above.

▸ Suppose, we have drawn a samples from standard normal
distribution.Then f(x) = ϕ(x) which is a continuous function.

▸ We have estimated the true density using the epanechnikov
kernel with a �xed bandwidth.



Asymptotic normality of kernel density estimator

▸ We plot the asymptotic distribution of

f̂n(x) −E(f̂n(x))
√

var(f̂n(x))

for x = 0 where we estimate E(f̂n(0)) and var(f̂n(0)) and put
them and plot the histogram from the simulated data.

▸ We can clearly see that the histogram closely resembles that of a
standard normal density as expected.
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Asymptotic Distribution

▸ Since, for large n ,

Zn (x) =
f̂n (x) −Ef̂n (x)
√

V f̂n (x)

L
Ð→ N (0,1)

where if we choose K (u) = ϕ (u), we get a closed form expression
for the expectation term as,

Ef̂n (x) =

∞

∫
−∞

1

hn
Kn (

x − u

hn
) f (u)du

=
1

2πhn

∞

∫
−∞

e
− 1

2 (
x−u
hn
)
2

e−
1
2u

2

du = (Kn ∗ f) (x)

=
1

√
2π
√
h2
n + 1

e
− 1

2
x2

h2
n+1 =

1
√
h2
n + 1

ϕ
⎛

⎝

x
√
h2
n + 1

⎞

⎠



Asymptotic Distribution

▸ and,

σ2
n (x) =

1

n2

n

∑
i=1

Var(
1

hn
K (

x −Xi

hn
))

≈
f (x)

nhn

∞

∫
−∞

K2
(u)du

=
f (x)

nhn

1

2
√
π

▸ While doing simulation, here we know the actual pdf f (x), hence
we can use this property to visualize the CLT property of kernel
density estimates by drawing upper and lower α points for each
of the values of x that gives us two nice curves like :-

P (Lα (x) ≤ f̂n (x) ≤ Uα (x)) ≈ 1 − α



Asymptotic Distribution

▸ where ,

Lα (x) = Ef̂n (x) − τα/2σn (x)

Uα (x) = Ef̂n (x) + τα/2σn (x)

▸ if we draw these lines around the true density of the sample
(ϕ (x)), we get something like this :-



Asymptotic Distribution
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